

Neutral Utterances are Also Causes_Enhancing Conversational Causal Emotion Entailment with Social Commonsense Knowledge

Jiangnan Li^{1,2,*}, Fandong Meng³, Zheng Lin^{1,2,†}, Rui Liu^{1,2}, Peng Fu^{1,†}, Yanan Cao^{1,2}, Weiping Wang¹ and Jie Zhou³ 1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China 3Pattern Recognition Center, WeChat AI, Tencent Inc, China {lijiangnan,linzheng,liurui1995,fupeng,wangweiping}@iie.ac.cn, {fandongmeng,withtomzhou}@tencent.com

2022. 5. 18 • ChongQing

IJCAI 2022

Chongqing University of ATA Advanced Technique of Artificial Intelligence

Artificial

1.Introduction

2.Method

3.Experiments

Introduction

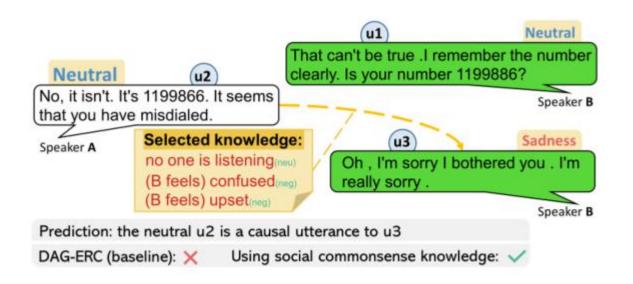


Figure 1: A case that the baseline DAG-ERC fails while the selected commonsense knowledge can help to make a right prediction.

Conversational Causal Emotion Entailment (C2E2) aims to detect causal utterances for a non-neutral targeted utterance from a conversation.

Causal utterances with different emotions, especially neutral ones (neutral causal utterances occupy 87% of this kind of causes), is still hard to detect even with emotion information. Models are limited in reasoning causal clues and passing them between utterances.

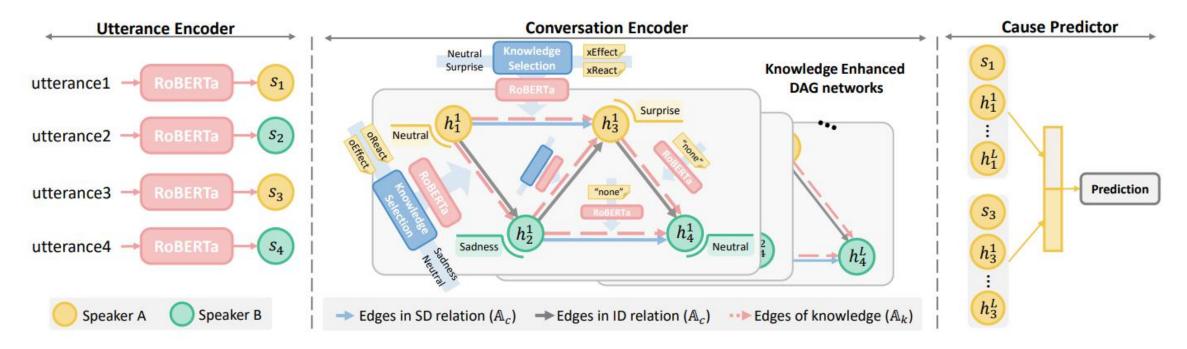
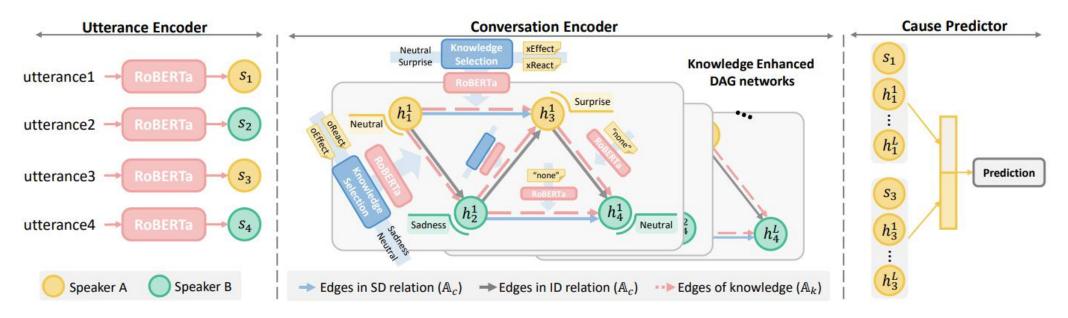


Figure 2: The structure of our model. It contains 3 modules: (1) Utterance Encoder encodes every utterance; (2) KEC graph is constructed from a conversation and knowledge attached in KEC graph is picked up by the knowledge selecting strategy. Conversation Encoder then uses Knowledge Enhanced DAG networks to process KEC graph; (3) Cause Predictor pairs every two utterances to make predictions.



Task Definition

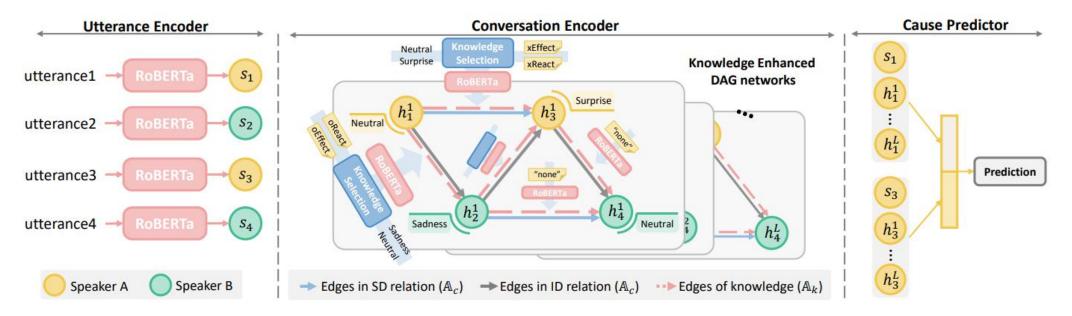
$$C = [u_1, ..., u_N] E = [e_1, ..., e_N]$$
$$P = [p_1, ..., p_N]$$

Every utterance u_i is paired with its contextual utterances u_j $(j \le i)$. If u_i is a non-neutral utterance and u_j is its causal utterance, the pair (u_i, u_j) is labeled with 1. Otherwise, (u_i, u_j) is labeled with 0.

Utterance Encoder

$$s_i = \text{Linear}(\text{Maxpooling}(\text{RoBERTa}(u_i))),$$
 (1)

where $s_i \in \mathbb{R}^{d_u}$ and d_u is the dimension of utterance representation.



Knowledge Enhanced Conversation Graph

 $\mathcal{G} \;=\; (\mathbb{V},\mathbb{A}_c,\mathbb{A}_k)$

Utterance nodes

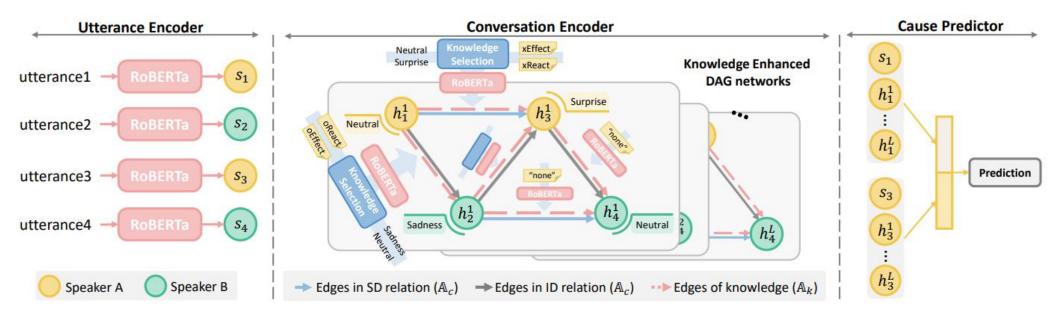
 \mathbb{V} models all utterances as nodes v_i in a conversation. v_i contains the attribute rep to store the utterance representation (i.e., v_i . rep = s_i).

Utterance interaction adjacency matrix

 A_c contains two attributes: item and rel, where item stores 0 or 1 to denote the existence of an edge and rel stores the relation type of an edge.

Knowledge passing adjacency matrix

 \mathbb{A}_k contains two attributes: item and klg, where item plays the same role as \mathbb{A}_c item and klg stores the knowledge attached on an edge.



Knowledge Enhanced Conversation Graph

xEffect, xReact, oEffect, and *oReact*

We denote the generation as $CT(u_i, xE)$, where CT and xE are the abbreviations of COMET and *xEffect* respectively.

The knowledge selection realizes two factors:

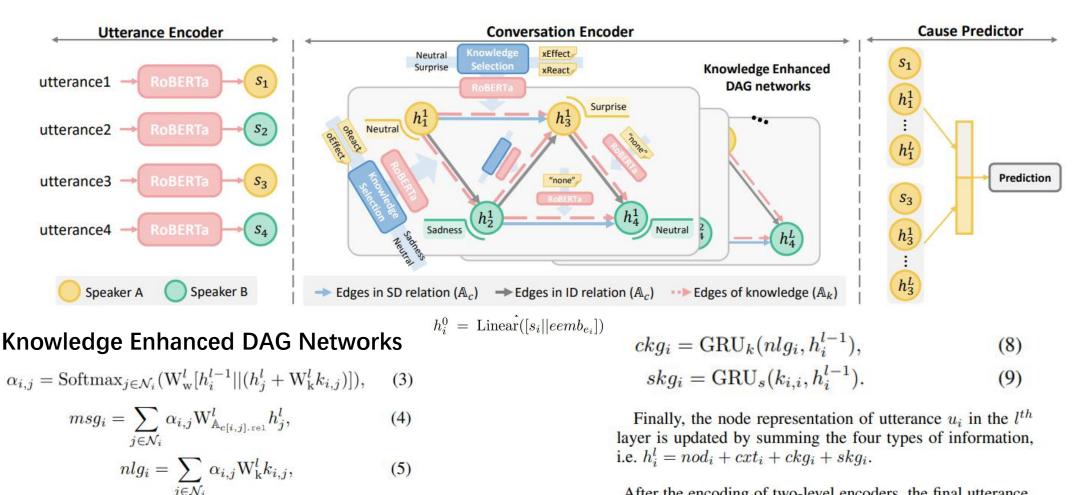
Speaker realization: If p_i of the target u_i equals to p_j of the source u_j , knowledge of *xEffect* and *xReact* is chosen, otherwise knowledge of *oEffect* and *oReact* picked.

Sentiment realization:

$$r_s = \begin{cases} r_{pos} - r_{neg}, & |r_{pos} - r_{neg}| > r_{neu} \\ 0, & \text{else} \end{cases}$$
(2)

 $posK_{x}, negK_{x}, neuK_{x} = split(CT(u_{j}, xE/xR))$ $posK_{o}, negK_{o}, neuK_{o} = split(CT(u_{j}, oE/oR))$

$$\begin{array}{l} \mathbf{f} \; e2s(e_i) \neq \texttt{neu then} \\ \mathbb{A}_k[i, j].\texttt{item} = 1 \\ \mathbf{if} \; e2s(e_j) == \texttt{neu then} \\ \mathbb{A}_k[i, j].\texttt{klg} = \texttt{K}[\texttt{neu}] + [\texttt{sep}] + \texttt{K}[e2s(e_i)] \\ \mathbf{else} \\ \mathbb{A}_k[i, j].\texttt{klg} = \texttt{K}[e2s(e_i)] \end{array}$$



After the encoding of two-level encoders, the final utterance representation is computed by $h_i = ||_{l=0}^L h_i^l$ [Shen *et al.*, 2021b]. Whether u_j is the cause of u_i is then computed by:

$$p_{i,j} = sigmoid(MLP([h_i||h_j])), \tag{10}$$

$$nod_i = \text{GRU}_n(h_i^{l-1}, msg_i), \tag{6}$$
$$cxt_i = \text{GRU}_c(msg_i, h_i^{l-1}). \tag{7}$$

Experiments

		Train	Dev	Test
Num. of	Positive	7027	328	1767
Causal Pair	Negative	45392	2842	14052
Num. of Dialgoue		834	47	225
Num. of Utterance		8206	493	2405
Avg. Len. of Utterance		14	16	15

Table 1: Statistics of RECCON-DD. "Positive" means the true causal pair.

	Model	Neg. F1	Pos. F1	macro F1
-	ECPE-2D [△]	94.96	55.50	75.23
1	ECPE-MLL [△]	94.68	48.48	71.59
	RankCP△	97.30	33.00	65.15
2	KAG	94.49(0.22)	55.52 _(2.39)	75.02 _(1.13)
	Adapted	95.67 _(0.24)	62.47(4.72)	$79.07_{(2.44)}$
	SKAIG	95.26(0.12)	63.15 _(1.00)	79.21(0.49)
3	Entail	94.83(0.47)	58.59 _(3.78)	76.66(1.66)
	DAG-ERC	95.33 _(0.25)	63.56(2.10)	79.44(1.16)
4	KEC (ours)	95.74 _(0.05)	66.76 [*] _(0.33)	81.25 [*] _(0.17)

Table 2: Results of all models on RECCON-DD. * denotes that our method is significant against the best baseline DAG-ERC (p-value<0.05) with the paired T-test. \triangle denotes the results referred from Poria et al. [2021].

ATA Advanced Technique of Artificial

Experiments

Method	Pos. F1	macro F1
KEC	66.76 (0.33)	81.25 (0.17)
- contextual	$64.93_{(0.69)}$	80.25(0.37)
knowledge unit	$-1.83_{(\downarrow)}$	$-1.00_{(\downarrow)}$
– self-loop	$65.00_{(0.92)}$	80.21(0.54)
knowledge unit	$-1.76_{(\downarrow)}$	$-1.04_{(\downarrow)}$
 neutral 	65.80(0.96)	80.67(0.52)
knowledege	$-0.96_{(\downarrow)}$	$-0.58_{(\downarrow)}$
- emotion	63.19 _(0.25)	79.35(0.17)
embs	$-3.56_{(\downarrow)}$	$-1.90_{(\downarrow)}$
- emoition embs &	46.66(0.76)	69.90 _(0.48)
CSK	$-20.1_{(\downarrow)}$	$-11.4_{(\downarrow)}$

Table 3: Ablation Study

ATA Advanced Technique of Artificial

Experiments

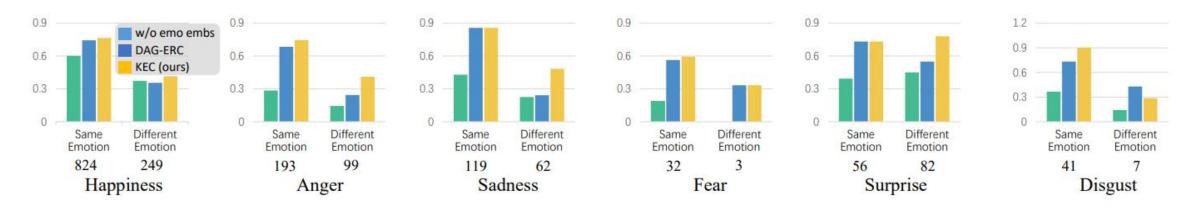


Figure 3: "Same Emotion" reports the recall of causal pairs whose causal utterances are with the same emotion as the targeted utterance. "Different Emotion" refers to different emotions from the targeted utterance. The number of a type of pairs is presented below the x-axis. Green bars denote DAG-ERC without emotion embeddings, blue bars for DAG-ERC with emotion embeddings, and orange bars for KEC.

ATA Advanced Technique of Artificial

Experiments

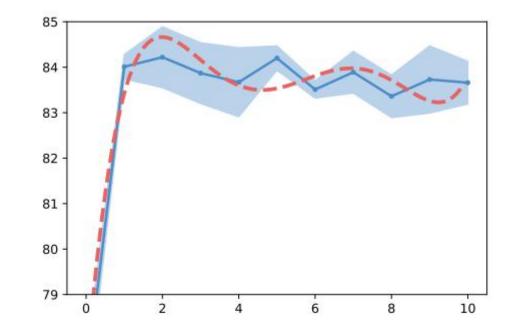


Figure 4: The effect of the window size. The y-axis denotes the macro F1 on the development set. To better fit the trend, we draw the trend line of fifth-order polynomial as the red dotted line.